Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202400625, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38556897

RESUMEN

Single-metal atomic sites and vacancies can accelerate the transfer of photogenerated electrons and enhance photocatalytic performance in photocatalysis. In this study, a series of nickel hydroxide nanoboards (Ni(OH)x NBs) with different loadings of single-atomic Ru sites (w-SA-Ru/Ni(OH)x) were synthesized via a photoreduction strategy. In such catalysts, single-atomic Ru sites are anchored to the vacancies surrounding the pits. Notably, the SA-Ru/Ni(OH)x with 0.60 wt % Ru loading (0.60-SA-Ru/Ni(OH)x) exhibits the highest catalytic performance (27.6 mmol g-1 h-1) during the photocatalytic reduction of CO2 (CO2RR). Either superfluous (0.64 wt %, 18.9 mmol g-1 h-1; 3.35 wt %, 9.4 mmol-1 h-1) or scarce (0.06 wt %, 15.8 mmol g-1 h-1; 0.29 wt %, 21.95 mmol g-1 h-1; 0.58 wt %, 23.4 mmol g-1 h-1) of Ru sites have negative effect on its catalytic properties. Density functional theory (DFT) calculations combined with experimental results revealed that CO2 can be adsorbed in the pits; single-atomic Ru sites can help with the conversion of as-adsorbed CO2 and lower the energy of *COOH formation accelerating the reaction; the excessive single-atomic Ru sites occupy vacancies that retard the completion of CO2RR.

2.
J Clin Invest ; 134(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557496

RESUMEN

Programmed cell death protein 1 (PD-1) is an immune checkpoint marker commonly expressed on memory T cells and enriched in latently HIV-infected CD4+ T cells. We engineered an anti-PD-1 chimeric antigen receptor (CAR) to assess the impact of PD-1 depletion on viral reservoirs and rebound dynamics in SIVmac239-infected rhesus macaques (RMs). Adoptive transfer of anti-PD-1 CAR T cells was done in 2 SIV-naive and 4 SIV-infected RMs on antiretroviral therapy (ART). In 3 of 6 RMs, anti-PD-1 CAR T cells expanded and persisted for up to 100 days concomitant with the depletion of PD-1+ memory T cells in blood and tissues, including lymph node CD4+ follicular helper T (TFH) cells. Loss of TFH cells was associated with depletion of detectable SIV RNA from the germinal center (GC). However, following CAR T infusion and ART interruption, there was a marked increase in SIV replication in extrafollicular portions of lymph nodes, a 2-log higher plasma viremia relative to controls, and accelerated disease progression associated with the depletion of CD8+ memory T cells. These data indicate anti-PD-1 CAR T cells depleted PD-1+ T cells, including GC TFH cells, and eradicated SIV from this immunological sanctuary.


Asunto(s)
Linfocitos T CD4-Positivos , Receptores Quiméricos de Antígenos , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Linfocitos T CD4-Positivos/inmunología , Centro Germinal/inmunología , Infecciones por VIH/terapia , Macaca mulatta/metabolismo , Receptor de Muerte Celular Programada 1 , Receptores Quiméricos de Antígenos/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/terapia
3.
Artículo en Inglés | MEDLINE | ID: mdl-38411834

RESUMEN

The increased incidence of hypertension associated with obstructive sleep apnea (OSA) presents significant physical, psychological, and economic challenges. Peroxisome proliferator-activated receptor gamma (PPARγ) plays a role in both OSA and hypertension, yet the therapeutic potential of PPARγ agonists and antagonists for OSA-related hypertension remains unexplored. Therefore, we constructed a chronic intermittent hypoxia (CIH)-induced hypertension rat model that mimics the pathogenesis of OSA-related hypertension in humans. The model involved administering PPARγ agonist rosiglitazone (RSG), PPARγ antagonist GW9662, or normal saline, followed by regular monitoring of blood pressure and thoracic aorta analysis using staining and electron microscopy. Intriguingly, our results indicated that both RSG and GW9662 appeared to potently counteract CIH-induced hypertension. In silico study suggested that GW9662's antihypertensive effect might mediated through angiotensin II receptor type 1 (AGTR1). Our findings provide insights into the mechanisms of OSA-related hypertension and propose novel therapeutic targets.

4.
Micromachines (Basel) ; 14(12)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38138335

RESUMEN

In Tb-Dy-Fe alloy systems, Tb0.29Dy0.71Fe1.95 alloy shows giant magnetostrictive properties under low magnetic fields, thus having great potential for transducers, microsensors, and other applications. The C15 cubic crystal structure of Tb-Dy-Fe has long been thought to be the source of giant magnetostriction. It is surprising that such a highly symmetrical crystal structure exhibits such a large magnetostrictive strain. In this work, the lattice parameters of Tb0.29Dy0.71Fe1.95 magnetostrictive materials were studied by processing atomic-resolution images. The selected area diffraction patterns show a face-centered cubic structure, but the fast Fourier transform diagram shows that the cubic structure has obvious distortion. The lattice parameters obtained by geometric phase analysis (GPA) and Gaussian model-based fitting and calculation show that the lattice constants a, b, and c are not strictly equal, and small disturbance of the lattice constants occurs based on the cubic structure. The actual crystal structure of the Tb-Dy-Fe material is a slightly disturbed cubic structure. This variation in the crystal lattice is mainly caused by the inhomogeneous composition and may be related to the giant magnetostrictive properties of Tb-Dy-Fe alloy.

5.
Micromachines (Basel) ; 14(10)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37893297

RESUMEN

In Tb-Dy-Fe alloy systems, Tb0.29Dy0.71Fe1.95 alloy shows giant magnetostrictive properties under low magnetic fields, thus having great potential for transducer and sensor applications. In this work, the lattice parameters of Tb0.29Dy0.71Fe1.95 compounds as a function of a magnetic field were investigated using in situ X-ray diffraction under an applied magnetic field. The results showed that the c-axis elongation of the rhombohedral unit cell was the dominant contributor to magnetostriction at a low magnetic field (0-500 Oe). As the magnetic field intensity increased from 500 Oe to 1500 Oe, although the magnetostrictive coefficient continued to increase, the lattice constant did not change, which indicated that the elongated c-axis of the rhombohedral unit cell rotated in the direction of the magnetic field. This rotation mainly contributed to the magnetostriction phenomenon at magnetic fields of above 500 Oe. The structural origin of the magnetostriction performance of these materials was attributed to the increase in rhombohedral lattice parameters and the rotation of the extension axis of the rhombohedral lattice.

6.
Food Chem X ; 20: 100932, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37868367

RESUMEN

The characteristic of typical base liquor is crucial in controlling ultimate quality of Jiang-flavor Baijiu. This study investigates the flavor compounds of three typical base liquors (Jiangxiang, Chuntian, and Jiaodixiang) by LLE/LLME/HS-SPME, gas chromatography-mass spectrometry (GC-MS), gas chromatography-flame ionization detection (GC-FID), sensory analysis, and odor activity value (OAV). Of the 201 main volatile compounds identified, 37 significant compounds distinguished the three typical base liquors. Acid (441.72 ±â€¯0.17 mg/L), alcohol (5388.88 ±â€¯0.55 mg/L), and ester compounds (8181.64 ±â€¯0.15 mg/L) were respectively marked in Jiangxiang, Chuntian, and Jiaodixiang typical base liquors. Orthogonal partial least squares discriminant analysis (OPLS-DA), correlation analysis, and aroma recombination showed that butyric acid (OAV: 102.23), butyl 2-methylbutyrate (OAV: 6045.59), and ethyl caproate (OAV: 418.37) were significantly correlated with sweet, fruity, pit mud, jiang, and ethanol aromas. It identifies the primary constituents that affect flavor variations in the three typical base liquors and provides guidance for investigations on the flavor formation of Jiang-flavor Baijiu.

7.
Int J Mol Sci ; 24(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37240123

RESUMEN

Abscisic acid (ABA) plays an important role in the response of plants to drought stress. However, the chemical structure of ABA is unstable, which severely limits its application in agricultural production. Here, we report the identification of a small molecule compound of tetrazolium as an ABA analog (named SLG1) through virtual screening. SLG1 inhibits the seedling growth and promotes drought resistance of Arabidopsis thaliana with higher stability. Yeast two-hybrid and PP2C inhibition assays show that SLG1 acts as a potent activator of multiple ABA receptors in A. thaliana. Results of molecular docking and molecular dynamics show that SLG1 mainly binds to PYL2 and PYL3 through its tetrazolium group and the combination is stable. Together, these results demonstrate that SLG1, as an ABA analogue, protects A. thaliana from drought stress. Moreover, the newly identified tetrazolium group of SLG1 that binds to ABA receptors can be used as a new option for structural modification of ABA analogs.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Resistencia a la Sequía , Simulación del Acoplamiento Molecular , Sequías , Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica de las Plantas , Receptores de Superficie Celular/metabolismo
8.
Sci Adv ; 9(21): eadc9660, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37224252

RESUMEN

Adult stem cells are essential for tissue maintenance and repair. Although genetic pathways for controlling adult stem cells are extensively investigated in various tissues, much less is known about how mechanosensing could regulate adult stem cells and tissue growth. Here, we demonstrate that shear stress sensing regulates intestine stem cell proliferation and epithelial cell number in adult Drosophila. Ca2+ imaging in ex vivo midguts shows that shear stress, but not other mechanical forces, specifically activates enteroendocrine cells among all epithelial cell types. This activation is mediated by transient receptor potential A1 (TrpA1), a Ca2+-permeable channel expressed in enteroendocrine cells. Furthermore, specific disruption of shear stress, but not chemical, sensitivity of TrpA1 markedly reduces proliferation of intestinal stem cells and midgut cell number. Therefore, we propose that shear stress may act as a natural mechanical stimulation to activate TrpA1 in enteroendocrine cells, which, in turn, regulates intestine stem cell behavior.


Asunto(s)
Células Madre Adultas , Proteínas de Drosophila , Drosophila , Canales Iónicos , Animales , Proliferación Celular , Intestinos/citología , Estrés Mecánico , Canales Iónicos/metabolismo , Proteínas de Drosophila/metabolismo
9.
Dev Cell ; 58(8): 660-676.e7, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37028426

RESUMEN

How glia control axon regeneration remains incompletely understood. Here, we investigate glial regulation of regenerative ability differences of closely related Drosophila larval sensory neuron subtypes. Axotomy elicits Ca2+ signals in ensheathing glia, which activates regenerative neurons through the gliotransmitter adenosine and mounts axon regenerative programs. However, non-regenerative neurons do not respond to glial stimulation or adenosine. Such neuronal subtype-specific responses result from specific expressions of adenosine receptors in regenerative neurons. Disrupting gliotransmission impedes axon regeneration of regenerative neurons, and ectopic adenosine receptor expression in non-regenerative neurons suffices to activate regenerative programs and induce axon regeneration. Furthermore, stimulating gliotransmission or activating the mammalian ortholog of Drosophila adenosine receptors in retinal ganglion cells (RGCs) promotes axon regrowth after optic nerve crush in adult mice. Altogether, our findings demonstrate that gliotransmission orchestrates neuronal subtype-specific axon regeneration in Drosophila and suggest that targeting gliotransmission or adenosine signaling is a strategy for mammalian central nervous system repair.


Asunto(s)
Adenosina , Axones , Ratones , Animales , Axones/metabolismo , Adenosina/metabolismo , Regeneración Nerviosa/fisiología , Células Ganglionares de la Retina/metabolismo , Drosophila , Mamíferos
10.
Neuron ; 110(22): 3727-3742.e8, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36087585

RESUMEN

Mechanical nociception is essential for animal survival. However, the forces involved in nociceptor activation and the underlying mechanotransduction mechanisms remain elusive. Here, we address these problems by investigating nocifensive behavior in Drosophila larvae. We show that strong poking stimulates nociceptors with a mixture of forces including shear stress and stretch. Unexpectedly, nociceptors are selectively activated by shear stress, but not stretch. Both the shear stress responses of nociceptors and nocifensive behavior require transient receptor potential A1 (TrpA1), which is specifically expressed in nociceptors. We further demonstrate that expression of mammalian or Drosophila TrpA1 in heterologous cells confers responses to shear stress but not stretch. Finally, shear stress activates TrpA1 in a membrane-delimited manner, through modulation of membrane fluidity. Together, our study reveals TrpA1 as an evolutionarily conserved mechanosensitive channel specifically activated by shear stress and suggests a critical role of shear stress in activating nociceptors to drive mechanical nociception.


Asunto(s)
Nociceptores , Canales de Potencial de Receptor Transitorio , Animales , Nociceptores/metabolismo , Drosophila/metabolismo , Nocicepción/fisiología , Mecanotransducción Celular , Canal Catiónico TRPA1/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Mamíferos/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(12): e2113645119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35294287

RESUMEN

Acute nociception is essential for survival by warning organisms against potential dangers, whereas tissue injury results in a nociceptive hypersensitivity state that is closely associated with debilitating disease conditions, such as chronic pain. Transient receptor potential (Trp) ion channels expressed in nociceptors detect noxious thermal and chemical stimuli to initiate acute nociception. The existing hypersensitivity model suggests that under tissue injury and inflammation, the same Trp channels in nociceptors are sensitized through transcriptional and posttranslational modulation, leading to nociceptive hypersensitivity. Unexpectedly and different from this model, we find that in Drosophila larvae, acute heat nociception and tissue injury-induced hypersensitivity involve distinct cellular and molecular mechanisms. Specifically, TrpA1-D in peripheral sensory neurons mediates acute heat nociception, whereas TrpA1-C in a cluster of larval brain neurons transduces the heat stimulus under the allodynia state. As a result, interfering with synaptic transmission of these brain neurons or genetic targeting of TrpA1-C blocks heat allodynia but not acute heat nociception. TrpA1-C and TrpA1-D are two splicing variants of TrpA1 channels and are coexpressed in these brain neurons. We further show that Gq-phospholipase C signaling, downstream of the proalgesic neuropeptide Tachykinin, differentially modulates these two TrpA1 isoforms in the brain neurons by selectively sensitizing heat responses of TrpA1-C but not TrpA1-D. Together, our studies provide evidence that nociception and noncaptive sensitization could be mediated by distinct sensory neurons and molecular sensors.


Asunto(s)
Nocicepción , Canales de Potencial de Receptor Transitorio , Animales , Drosophila/fisiología , Neuronas , Nocicepción/fisiología , Nociceptores/fisiología , Transductores , Canales de Potencial de Receptor Transitorio/genética
12.
Front Plant Sci ; 13: 1088278, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36714693

RESUMEN

Roots are the main organs through which plants absorb water and nutrients. As the key phytohormone involved in root growth, auxin functions in plant environmental responses by modulating auxin synthesis, distribution and polar transport. The Arabidopsis thaliana trehalose-6-phosphate phosphatase gene AtTPPI can improve root architecture, and tppi1 mutants have significantly shortened primary roots. However, the mechanism underlying the short roots of the tppi1 mutant and the upstream signaling pathway and downstream genes regulated by AtTPPI are unclear. Here, we demonstrated that the AtTPPI gene could promote auxin accumulation in AtTPPI-overexpressing plants. By comparing the transcriptomic data of tppi1 and wild-type roots, we found several upregulations of auxin-related genes, including GH3.3, GH3.9 and GH3.12, may play an important role in the AtTPPI gene-mediated auxin transport signaling pathway, ultimately leading to changes in auxin content and primary root length. Moreover, increased AtTPPI expression can regulate primary root growth and lateral root elongation under different concentration of nitrate conditions. Overall, constitutive expression of AtTPPI increased auxin contents and improved lateral root elongation, constituting a new method for improving the nitrogen utilization efficiency of plants.

13.
Front Psychol ; 12: 621418, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33762997

RESUMEN

Understanding the influencing factors of cyberbullying is key to effectively curbing cyberbullying. Among the various factors, this study focused on the personal level of individual students and categorized the influencing factors of cyberbullying among college students into five sublevels, i.e., background, Internet use and social network habits, personality, emotion, and literacy related to digital citizenship. Then a questionnaire survey was applied to 947 Chinese college students. The results show that cyberbullying among Chinese college students are generally at a low level. There are many factors influence cyberbullying. Specifically, at the personal background level, gender has a significant impact on cyberbullying and being cyberbullied. In terms of personal Internet use and social network habits, students' average daily online time has no significant correlation with cyberbullying and being cyberbullied; however, the proportion of online non-learning time has a significantly positive correlation with cyberbullying, and the proportion of online learning/work time has a significant impact on being cyberbullied. At the personality level, the Big Five personality traits have varying degrees of correlation with and influence on cyberbullying and being cyberbullied. At the personal emotions level, students' life satisfaction has a significantly negative correlation with cyberbullying and being cyberbullied while it only has a significant impact on being cyberbullied; the personal stress and empathetic concern aspects of empathy have a significantly positive correlation with cyberbullying and being cyberbullied among female students. At the literacy related to digital citizenship level, students' understanding of and compliance with Internet etiquette have significantly negative impacts on cyberbullying; the ability to communicate and collaborate online and Internet addiction have significantly positive impacts on cyberbullying and being cyberbullied; the understanding of and compliance with relevant digital laws and regulations have significantly negative correlations with cyberbullying and being cyberbullied. Overall, college students' digital citizenship level has a significantly negative correlation with cyberbullying but no significant correlation with being cyberbullied. Finally, analysis and suggestions were provided according to these statistical results and the effects of these factors on cyberbullying and being cyberbullied among college students, so as to help solve this problem and provide a new perspective for research in this field.

14.
Artículo en Inglés | MEDLINE | ID: mdl-33629161

RESUMEN

Although biochar (BC) has been widely used to adsorb pollutants in environment due to its natural and green characteristics, the structural defects of BC limit the ability to remove various environmental pollutants in aqueous solution. In this study, oxidized biochar (OBC) and sulfhydryl biochar (SBC) derived from pomelo peel (PP) were prepared through an oxidation and esterification reaction. BC and modified BC were used for the removal of methylene blue (MB), Cd2+, and phenanthrene (PHE) in aqueous solution. The adsorption behavior and efficiency toward different types of pollutants were studied by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), Raman, X-ray photoelectron spectroscopy (XPS), kinetics, and isotherm model fitting. The results showed that the change of pH had great effect on MB and Cd2+ adsorption, but not on PHE. SBC not only possessed the newly formed sp2-hybridized domains with easy access to aromatic pollutants but also had multiple functional groups (-COOH, -OH, -SH, -NH2) that provided adsorption sites for positively charged pollutants. SBC was more flexible and efficient in purifying pollutants compared to BC and OBC, with the saturated adsorption capacities of MB (209.16 mg/g), Cd2+ (786.19 mg/g), and PHE (521.58 mg/g). Moreover, the adsorption kinetic and isotherms fitting showed that the adsorption mechanisms were closely related to the structure of biochar and the properties of pollutants, including π-π interaction, surface charge, electrostatic interaction, surface functional groups, and Van der Waals force. In addition, the analysis of structure-function relationship demonstrated the enhanced hydrophilicity and the easy exposure of the binding sites on OBC and SBC. Hence, it was significantly effective to regulate microstructure and interfacial properties to promote its adsorption behaviors of biochar.

15.
Environ Sci Pollut Res Int ; 28(1): 1061-1071, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32827120

RESUMEN

Biochar (BC) has been widely used to remove heavy metals from wastewater. However, due to the hydrophobicity of BC and the lack of its surface functional groups, the effect of metal ions adsorption onto BC is limited. In order to improve the adsorption efficiency, L-cysteine was used to modify biochar derived from pomelo peel (PP) to regulate surface structure. The characteristics of BC and cysteine/biochar composite (cys/BC) were analyzed by various characterization methods. Results showed that the hydrophilicity of biochar was enhanced, and the number of surface functional groups was increased, resulting to strong adsorption ability of Ag(I) (618.9 mg/g), Pb(II) (274.5 mg/g), and As(V) (34.7 mg/g) for cys/BC, which increased approximately by 15%, 35%, and 29% compared with that of BC, respectively. The adsorption process of Pb(II) onto cys/BC was fitted better by the Freundlich isotherm model and for Ag(I) and As(V) by the Langmuir isotherm model. Moreover, the adsorption kinetics followed pseudo-second-order equation and the adsorption process was controlled by the intraparticle diffusion for Ag(I), Pb(II), and As(V) adsorption onto cys/BC. In addition, the adsorption capacities of cys/BC for Ag(I), Pb(II), and As(V) decreased slightly after five adsorption/desorption cycles. Finally, the multiple adsorption mechanisms including functional groups, pore adsorption, surface complexation, and cations-π were analyzed. The paper demonstrated that the cys/BC composite could be reused as effective adsorbents for removing contaminants in the environment.


Asunto(s)
Cisteína , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Cinética , Contaminantes Químicos del Agua/análisis
16.
Plant Sci ; 298: 110588, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32771147

RESUMEN

R3-MYBs negatively regulate anthocyanin pigmentation in plants. However, how R3-MYB repressors finely modulate anthocyanin biosynthesis in cooperation with R2R3-MYB activators remains unclear in monocots. We previously identified two anthocyanin-related R2R3-MYB activators (MaMybA and MaAN2) in grape hyacinth (Muscari spp.). Here, we isolated a R3-MYB repressor, MaMYBx, and characterized its role in anthocyanin biosynthesis using genetic and biochemical markers. The temporal expression pattern of MaMYBx was similar to that of MaMybA and MaAN2, and it was correlated with anthocyanin accumulation during flower development. MaMYBx could be activated either by MaMybA alone or by MaMybA/MaAN2 and cofactor MabHLH1, and it suppressed its own activation and that of MaMybA promoters mediated by MaMybA/MaAN2 and MabHLH1. Like MaMybA, MaMYBx interacted with MabHLH1. MaDFR and MaANS transcription and anthocyanin accumulation mediated by MaMybA/MaAN2 and MabHLH1 were inhibited by MaMYBx. Overexpression of MaMYBx in tobacco greatly reduced flower pigmentation and repressed the expression of late structural and regulatory anthocyanin pathway genes. Thus, MaMYBx finely regulates anthocyanin biosynthesis by binding to MabHLH1 and disrupting the R2R3 MYB-bHLH complex in grape hyacinth. The regulatory network of transcriptional activators and repressors modulating anthocyanin biosynthesis is conserved within monocots. MaMYBx seems a potentially valuable target for flower color modification in ornamental plants.


Asunto(s)
Antocianinas/biosíntesis , Asparagaceae/genética , Regulación de la Expresión Génica de las Plantas , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Antocianinas/genética , Asparagaceae/metabolismo , Filogenia , Pigmentos Biológicos/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Alineación de Secuencia , /metabolismo
17.
Int J Mol Sci ; 21(3)2020 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-31991793

RESUMEN

Circular RNAs (circRNAs) are endogenous noncoding RNAs with covalently closed continuous loop structures that are formed by 3'-5' ligation during splicing. These molecules are involved in diverse physiological and developmental processes in eukaryotic cells. Jasmonic acid (JA) is a critical hormonal regulator of plant growth and defense. However, the roles of circRNAs in the JA regulatory network are unclear. In this study, we performed high-throughput sequencing of Arabidopsis thaliana at 24 h, 48 h, and 96 h after methyl JA (MeJA) treatment. A total of 8588 circRNAs, which were distributed on almost all chromosomes, were identified, and the majority of circRNAs had lengths between 200 and 800 bp. We identified 385 differentially expressed circRNAs (DEcircRNAs) by comparing data between MeJA-treated and untreated samples. Gene Ontology (GO) enrichment analysis of the host genes that produced the DEcircRNAs showed that the DEcircRNAs are mainly involved in response to stimulation and metabolism. Additionally, some DEcircRNAs were predicted to act as miRNA decoys. Eight DEcircRNAs were validated by qRT-PCR with divergent primers, and the junction sites of five DEcircRNAs were validated by PCR analysis and Sanger sequencing. Our results provide insight into the potential roles of circRNAs in the MeJA regulation network.


Asunto(s)
Acetatos/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Oxilipinas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , ARN Circular/genética , Mapeo Cromosómico , Biología Computacional/métodos , Perfilación de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes , MicroARNs/genética , ARN Mensajero/genética
18.
Curr Biol ; 29(23): 3961-3973.e6, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31735672

RESUMEN

Transcripts of noxious stimulus-detecting TrpA1 channels are alternatively spliced. Despite the importance of nociception for survival, the in vivo significance of expressing different TrpA1 isoforms is largely unknown. Here, we develop a novel genetic approach to generate Drosophila knockin strains expressing single TrpA1 isoforms. Drosophila TrpA1 mediates heat and UVC-triggered nociception. We show that TrpA1-C and TrpA1-D, two alternative isoforms, are co-expressed in nociceptors. When examined in heterologous cells, both TrpA1-C and TrpA1-D are activated by heat and UVC. By contrast, analysis of knockin flies reveals the striking functional specificity; TrpA1-C mediates UVC-nociception, whereas TrpA1-D mediates heat-nociception. Therefore, in vivo functions of TrpA1-C and TrpA1-D are different from each other and are different from their in vitro properties. Our results indicate that a given sensory stimulus preferentially activates a single TrpA1 isoform in vivo and that polymodal nociception requires co-expression of TrpA1 isoforms, providing novel insights of how alternative splicing regulates nociception.


Asunto(s)
Empalme Alternativo , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Canales Iónicos/genética , Nocicepción , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Canales Iónicos/metabolismo , Isoformas de Proteínas/genética , Análisis de la Célula Individual
19.
Molecules ; 24(8)2019 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-31013599

RESUMEN

Flavonols are important copigments that affect flower petal coloration. Flavonol synthase (FLS) catalyzes the conversion of dihydroflavonols to flavonols. In this study, we identified a FLS gene, MaFLS, expressed in petals of the ornamental monocot Muscari aucheri (grape hyacinth) and analyzed its spatial and temporal expression patterns. qRT-PCR analysis showed that MaFLS was predominantly expressed in the early stages of flower development. We next analyzed the in planta functions of MaFLS. Heterologous expression of MaFLS in Nicotiana tabacum (tobacco) resulted in a reduction in pigmentation in the petals, substantially inhibiting the expression of endogenous tobacco genes involved in anthocyanin biosynthesis (i.e., NtDFR, NtANS, and NtAN2) and upregulating the expression of NtFLS. The total anthocyanin content in the petals of the transformed tobacco plants was dramatically reduced, whereas the total flavonol content was increased. Our study suggests that MaFLS plays a key role in flavonol biosynthesis and flower coloration in grape hyacinth. Moreover, MaFLS may represent a new potential gene for molecular breeding of flower color modification and provide a basis for analyzing the effects of copigmentation on flower coloration in grape hyacinth.


Asunto(s)
Flavonoles/biosíntesis , Flores , Hyacinthus , Oxidorreductasas , Pigmentación/fisiología , Proteínas de Plantas , Antocianinas/genética , Flavonoles/genética , Flores/enzimología , Flores/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Hyacinthus/enzimología , Hyacinthus/genética , Oxidorreductasas/biosíntesis , Oxidorreductasas/genética , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , /genética
20.
Neuron ; 102(2): 373-389.e6, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30819546

RESUMEN

Neurons exhibit a limited ability of repair. Given that mechanical forces affect neuronal outgrowth, it is important to investigate whether mechanosensitive ion channels may regulate axon regeneration. Here, we show that DmPiezo, a Ca2+-permeable non-selective cation channel, functions as an intrinsic inhibitor for axon regeneration in Drosophila. DmPiezo activation during axon regeneration induces local Ca2+ transients at the growth cone, leading to activation of nitric oxide synthase and the downstream cGMP kinase Foraging or PKG to restrict axon regrowth. Loss of DmPiezo enhances axon regeneration of sensory neurons in the peripheral and CNS. Conditional knockout of its mammalian homolog Piezo1 in vivo accelerates regeneration, while its pharmacological activation in vitro modestly reduces regeneration, suggesting the role of Piezo in inhibiting regeneration may be evolutionarily conserved. These findings provide a precedent for the involvement of mechanosensitive channels in axon regeneration and add a potential target for modulating nervous system repair.


Asunto(s)
Axones/fisiología , Proteínas de Drosophila/genética , Canales Iónicos/genética , Regeneración/genética , Animales , Calcio/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Conos de Crecimiento/metabolismo , Canales Iónicos/metabolismo , Mecanotransducción Celular/genética , Ratones , Ratones Noqueados , Regeneración Nerviosa/genética , Óxido Nítrico Sintasa/metabolismo , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...